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We develop a semiquantitative theory to describe the experimentally observed energy gain when two light
beams intersect in hybrid organic-inorganic photorefractives. These systems consist of a nematic liquid-crystal
�LC� layer placed between two photorefractive windows. A periodic space-charge field is induced by the
interfering light beams in the photorefractive windows. The field penetrates into the LC, interacting with the
nematic director and giving rise to a diffraction grating. LC flexoelectricity is the principal physical mechanism
driving the grating structure. Each light beam diffracts from the induced grating, leading to an apparent energy
gain and loss within each beam. The LC optics is described in the Bragg regime. In the theory the exponential
gain coefficient is a product of a beam interference term, a flexoelectricity term and a space-charge term. The
theory has been compared with results of an experimental study on hybrid cells filled with the LC mixture TL
205. Experimentally the energy gain is maximal at much lower grating wave numbers than is predicted by
naïve theory. However, if the director reorientation is cubic rather than linear in the space-charge field term,
then good agreement between theory and experiment can be achieved using only a single fitting parameter. We
provide a semiquantitative argument to justify this nonlinearity in terms of electric-field-induced local phase
separation between different components of the liquid crystal.
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I. INTRODUCTION

In solid inorganic crystals energy transfer between inci-
dent light beams in a two-wave mixing geometry due to the
photorefractive effect is well known �1�. In these systems a
small relative refractive index modulation of order �10−4

can cause intensity gain coefficients as high as 10–100 cm−1

�2�. Significant photorefractivelike interactions have been
also observed in liquid-crystal �LC� cells in recent years.
Here there is a relatively high index modulation of order 0.2
caused by LC director reorientation. For these systems, very
strong two-beam energy transfer between two coupled beams
has been observed �3–5�, with gain coefficient reaching
2890 cm−1 �4�. The physical mechanism for liquid-crystal
�or so-called “organic”� photorefraction is as follows. The
nematic LCs are photoconductive. The diffusion constants of
the photogenerated negative and positive ions differ, leading
to charge separation, which in turn causes a space-charge
electric field. It is this electric field which modulates the
nematic director field and hence causes a modulation the
�tensor� refractive index. This phenomenon is known as ori-
entational photorefraction �6–8�.

In a related set of systems, photorefractive or photocon-
ducting layers are placed adjacent to a LC sample �9–11�. In
a beam-coupling geometry, space charges are photogenerated
in the photorefractive/photoconducting layers, leading, as
might be expected, to space-charge electric fields. These
space-charge electric fields leak into the adjacent LC, caus-
ing director modulation. These �“hybrid organic-inorganic

photorefractive”� systems also exhibit enhanced two-beam
coupling. The gain coefficients in such systems can even
reach values more than two orders of magnitude larger than
those in solid inorganic photorefractive crystals. The gain
coefficients in these experiments are sufficiently large that
these systems are attracting interest from an applications
point of view. However, it has until very recently only been
possible to operate in the Raman-Nath regime, for which the
sample thickness is less than the grating thickness. In this
regime, coupled beams also generate multiple order dif-
fracted beams. To minimize this effect, the angle between the
pump and signal beams is restricted to less than a few de-
grees. Thus the effect might only be of limited technological
applicability.

However, in very recent work, some of us have shown
�12,13� that inorganic photorefractive crystals have a suffi-
ciently large effective trap density to support efficient space-
charge field generation necessary to reach the Bragg regime
�13–15�. In this regime the sample thickness is greater than
the grating thickness. In these experiments, the Bragg regime
applies to the nonlinear optics both in the inorganic photore-
fractive layers and in the adjacent LC layers. Key features of
these experiments include: �a� a maximum in the energy gain
at small grating spacings ��1.5–2��m and �b� a gain coef-
ficient which can reach 600 cm−1, depending on the LC cell
thickness. Even greater two-beam coupling effects have been
observed in other hybrid organic-inorganic photorefractives,
for which the LC is doped either by a low concentration of
ferroelectric nanoparticles �16� or by chiral impurities �17�.
However, in all these systems, the precise mechanisms re-
main unclear.

The idea that an evanescent field from a space-charge
field from inside a photorefractive substrate could reorient a
LC director and hence lead to grating formation was first
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proposed a decade ago by Tabiryan and Umeton �18�. This
effect is shown in cartoon form in Fig. 1. Jones and Cook
�19� used this idea to model a so-called dual photorefractive
substrate device, in which a liquid-crystal slab is sandwiched
between two photorefractive samples. In these papers the
evanescent electric field couples with the director through
�and only through� the LC static dielectric anisotropy, lead-
ing to the formation of a director grating. In these systems
the LC layer is thin compared to adjacent photorefractive
substrate. However, the evanescent field idea has also been
applied to systems in which a very thin photoconductive
PVK �poly�3-3� �vinylcarbazole��� layer has been attached to
the liquid-crystal surface �20–22�.

In this paper we make a theoretical study of our beam-
coupling experiments in hybrid organic-inorganic photore-
fractives �13–15�. The geometry of these experiments is
shown in Fig. 2. The theory uses the evanescent fields as a
key idea. We note that from a technological point of view,
maximal effects may require either chiral or nanoparticle im-
purities or both �16,17�. However, we begin with a physical
picture for simpler cases which omit these complications. A
sensible starting point is naïvely to apply the ideas ex-
pounded in the theoretical papers of Tabiryan and Umeton
�18� and Jones and Cook �19�. But we find that doing this
yields a maximal energy transfer for grating spacings of the
order of the LC cell thickness. In fact this prediction is not
borne out by experiment.

In the calculation presented in this paper, the flexoelectric
interaction between the director and the electric field is also
included. This effect has not been previously included in
theoretical calculations. However, the experiments of Cook

et al. �13� have hinted strongly that flexoelectric effects are
important. We shall show that this is a more important
mechanism for electric field-director coupling than the LC
static dielectric anisotropy coupling discussed in Refs.
�18,19�.

However, we need to include one extra new theoretical
idea. We find that the results �13–15� cannot be explained
consistently without including a nonlinear contribution to the
magnitude of the grating as a function of optical electric field
intensity. This paper includes results of an independent ex-
perimental study of two-beam energy exchange in hybrid
photorefractive cells filled with the LC mixture TL 205. This
experiment, which involves a third beam, has been specifi-
cally designed to pinpoint this contribution. The presence of
the nonlinear term has been explicitly confirmed by this ex-
periment. We speculate that this nonlinearity, which affects
the flexoelectric coupling, might be caused by electric-field-
induced component separation in a multicomponent liquid
crystal. This speculation is supported by a semiquantitative
calculation which gives the right order of magnitude and
functional dependence on grating spacing. It is then possible
to provide an excellent fit to the experimental results using
only one fitting parameter.

The paper is organized as follows. In Sec. II we introduce
the model, concentrating on the interfering incident light
beams and the space-charge field in the photorefractive sub-
strates. We also define the crucial quantities associated with
gain. In Sec. III we discuss the evanescent space-charge field
in the LC, derive equations for the LC director subject to this
electric field, and then solve them. In Sec. IV we discuss
light propagation in the LC, starting with expressions for the
dielectric tensor, going on to derive equations for the two
coupled light modes, and finally deriving expressions for the
exponential gain coefficient in the LC cell. In Sec. V, we
make comparisons with experimental results and find that the
basic linear theory which we have developed fails to account
for the experiments. We develop an alternative nonlinear pic-
ture, compare this picture with experiments, and report on
experiments which corroborate our alternative phenomeno-
logical model. In Sec. VI we discuss the microscopic status
of the phenomenological model we have introduced and give
further reasons for believing that the picture we have devel-
oped is correct. We also present some brief further conclu-
sions.

II. MODEL

The experiment consists of a hybrid cell consisting of
flexoelectric nematic LC placed between two plane-parallel
transparent photorefractive layers. The LC is bounded by the
planes z=−L /2 and z=L /2. The hybrid cell is illuminated by
two intersecting coupled polarized coherent light beams E1
=A1�z�e1 exp�ik1 ·r− i�t� and E2=A2�z�e2 exp�ik2 ·r− i�t�.
In the context of propagation in the LC, these beams are
extraordinary waves. The nonlinear properties of both media
require that A1�z� and A2�z� not be constant but change as a
function of position, as energy exchange takes place between
the beams. The bisector of the beams is directed along the z
axis, the wave vectors k1 and k2 and the polarization vectors

FIG. 1. �Color online� The periodic space-charge field from in-
side the photorefractive substrate penetrates into the liquid crystal.
This reorients the liquid crystal director, allowing the cell to act as
a grating.

FIG. 2. �Color online� The geometry of two beam-coupling ex-
periments in hybrid organic-inorganic photorefractives.
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e1 and e2 of the beams, and the liquid-crystal directors all lie
in the xz plane. The experimental setup is shown in Fig. 3.

Energy transfer takes place between beams within the
photorefractive medium. This is well-understood phenom-
enon. Energy transfer also takes place within the liquid crys-
tal, and much of this paper will concentrate specifically on
this region. The beams form a light intensity interference
pattern

I�z� = �I1 + I2��1 +
1

2
�m�z� exp�iqx� + c.c.�� , �1�

where the modulation parameter m�z�
=2 cos�2��A1�z�A2

��z� / �I1+ I2�, 2� is the angle between the
two incident beams in the photorefractive medium, I1
=A1A1

� and I2=A2A2
� are the intensities of the incident beams,

and q=k1x−k2x=2k sin ��2k� is the wave number of inten-
sity pattern ��23�, p. 84�.

Within the photorefractive layers the light intensity pat-
tern �Eq. �1�� induces a space charge. The fundamental Fou-
rier component of the space-charge density is modulated
along the x axis with period equal to 2� /q and creates a
space-charge electric field 1

2Esc�q ,z�exp�iqx�+c.c., where
Esc�q ,z�=E0sc�q�m�z� depends on the physical properties
and geometry of the photorefractive material.

In an infinite photorefractive medium E0sc�q� is parallel to
the x-axis �i.e., the grating vector�. For a diffusion-dominated
space-charge field, E0sc�q� takes the following form ��23�, p.
89�:

E0sc�q� =
iEd

1 +
Ed

Eq

, Ed = q
kbT

e
, Eq = 	1 −

Na

Nd

 eNa

�0�Phq
,

�2�

where Ed is the diffusion field, Eq is the so-called saturation
field, Na and Nd are, respectively, the acceptor and donor
impurity densities, �Ph is the dielectric permittivity of photo-
refractive material, and e is the electron charge. The relation

E=−�� yields the following approximate form for the total
electric potential ��x ,z� in the photorefractive medium:

��x,z� = �0 +
1

2
�i�̃�z�exp�iqx� + c.c.� �3�

where �0 is an arbitrary constant �which may be taken to be
zero�, and

�̃�z� =
E0sc�q�

q
m�z� . �4�

The photorefractive media are not infinite but semi-
infinite. Thin polymer layers between the liquid crystal and
the photorefractive media play the dual roles of orientating
layers for the liquid crystal and charge caps preventing the
space charges in the photorefractive media from escaping.
The confinement of the charges causes the expressions for
the fields �Eq. �2�� to hold approximately in the photorefrac-
tive media right up to the liquid-crystal boundaries. The so-
lution for the electric fields in the photorefractive media and
the liquid crystal is actually a complex coupled problem.
However, if we suppose that Eq. �2� remains true at the
liquid-crystal-photorefractive media boundaries, the electric
field problems in the two media separate, with Eqs. �2� now
acting as boundary conditions for the electric potential
within the liquid crystal.

In much of this paper we shall be specifically interested in
the progress of the coupled waves through the liquid-crystal
medium. We can calculate the amplitudes of the beams as
they are incident on the liquid-crystal slab using the well-
known theory �23� of beam coupling in photorefractive ma-
terial alone. We can thus define the quantities

B1 = A1	−
L

2

, B2 = A2	−

L

2

 . �5�

The specific goal of this paper is to calculate the analogous
quantities for the beams as they exit the liquid-crystal slab.
We denote these by

C1 = A1	L

2

, C2 = A2	L

2

 . �6�

An important intermediate quantity in the calculation is the
modulation parameter m�z�. We consider only the case when
the intensity of one light beam �signal� is much less than the
intensity of another light beam �pump�, namely, I1� I2. In
this case the values of the modulation parameter associated
with the beams as they enter and exit the liquid-crystal slab
are described by the following expressions:

m1 = m	−
L

2

 = 2 cos�2��

B1

B2
, m2 = m	L

2

 = 2 cos�2��

C1

C2
.

�7�

The two beams under consideration are conventionally
regarded as a signal beam, containing relevant information,
and a pump beam which conveys no information but pro-
vides energy which is transferred into the signal beam. In
this paper the signal beam is denoted by the amplitude A1�z�,
and the pump beam is denoted by the amplitude A2�z�. The

FIG. 3. Experimental set-up, showing light beams incident from
photorefractive medium, together with associated wave- and polar-
ization vectors. The quantities k1 ,�1,2 , �̃1,2 ,e1,2 are defined in the
text
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nonlinear properties of the liquid-crystal layer are defined by
the transmission operator M, where

C = MB, C = �C1

C2
�, B = �B1

B2
�, M = �M11 M12

M21 M22
� .

�8�

The degree of transfer from the pump into the signal
beams is conventionally described in terms of a total signal
gain G=M11. This can be translated into an effective gain
coefficient �or sometimes exponential gain coefficient� g, the
gain per unit length of the signal beam, where

g =
1

L
lnG . �9�

The physical mechanism for the nonlinear optical activity
within the liquid-crystal slab has been described in outline in
the introduction. The space-charge fields due to the wave
interference in the photorefractive media leak into the liquid-
crystal slab. These fields reorient the liquid-crystal director.
This in turn sets up a periodic grating which causes energy
exchange between the beams.

One may ask why it is worth putting in the liquid-crystal
layer when the photorefractive layers already create a non-
linear optical medium. In fact the effect of the space charges
is to create electric fields which reorient the director outside
the photorefractive region. The director is extremely sensi-
tive even to weak fields. Thus, in some sense, the presence of
the liquid crystal allows the experimenter to use the space-
charge fields to create beam exchange even outside the spe-
cifically photorefractive regions. If the liquid-crystal slab is
too thin, then these fields are not being used optimally. If it is
too thick, then there will be part of the liquid-crystal slab in
which the evanescent fields have decayed too far. From the
point of view of optical gain, when this is the case, some
liquid crystal is being wasted.

The calculation presented in this paper contains two self-
consistent steps, one of which cannot be avoided even ap-
proximately. The gain depends on the transmission operator
M. The operator M depends on the dielectric profile within
the slab, which in turn depends on the director profile. The
director reorientation depends on the electric field. The elec-
tric field depends weakly on the director. This involves a
self-consistent step, but one which can be omitted in a pre-
liminary calculation without great cost. In this paper we
adopt this strategy.

The electric field inside the liquid crystal also depends
crucially on the boundary conditions for the electric poten-
tial. We explain above our procedure for decoupling the elec-
tric problem into a bulk photorefraction and a liquid-crystal
surface problem. This simplifies the problem somewhat. But
the surface problem nevertheless requires knowledge of the
electric potential where the beams exit the liquid-crystal slab.
But this electric potential depends on space charge, hence on
the modulation parameter m2, and hence on the transmission
operator M. This self-consistency step is unavoidable al-
though in practice the gain G over the liquid-crystal slab is
sufficiently close to unity that the self-consistency of the
calculation is not so important.

We have now described the formal stages required in car-
rying out the calculation. The first step, to be discussed in
Sec. III, involves a calculation of the director, and hence the
dielectric profile. The next step, to be discussed in Sec. IV,
involves the derivation of the transmission properties of the
liquid-crystal layer.

III. DIRECTOR PROPERTIES

A. Photorefractive electric field in liquid crystal

We now discuss the penetration into the LC of the space-
charge electric field in the photorefractive media. The elec-
tric field obeys the Poisson equation

� · ��0�̂̃ · E + � f� = 0, �10�

where �̃ij = �̃��ij + �̃aninj is the low-frequency dielectric per-
mittivity of the LC, ni are the components of the director n,
�̃a= �̃� − �̃� is the dielectric anisotropy, �̃� and �̃� are the
components of the dielectric tensor along and perpendicular
to the director. The flexopolarization P f is defined by the
expression �24,25�:

P f = e11n � · n + e33�� 	 n� 	 n , �11�

where e11 and e33 are the flexoelectric coefficients.
We note that the director field n�z� responds to the electric

field defined in Eq. �10� and that technically it is necessary to
solve Eqs. �10� and �11� self-consistently with equations for
the director. However, we will consider only small deviations
of the director in response to the electric field. In this case we
can neglect the feedback of the director response on the elec-
tric field in the photorefractive medium. Detailed calcula-
tions �not included here� demonstrate that the neglected
terms give negligibly small contribution to the gain. Thus we
can ignore Eq. �11� at this stage of the calculation.

To solve Eq. �10� inside the liquid crystal, we use the
relation E�x ,z�=−��LC�x ,z� and seek solutions for the elec-
tric potential �LC in the form

�LC = �0�z� +
1

2
�i��z�exp�iqx� + c.c.� . �12�

Combining Eqs. �10� and �12� yields

�2�0

�z2 = 0, �13�

�̃�

�2�

�z2 − �̃�q2� = 0. �14�

Using Eq. �4�, the boundary conditions for the electric
potentials at the liquid-crystal boundaries z= 


L
2 can now be

written as

�0�z = 
 L/2� = 0, ��z = 
 L/2� = �1,2, �15�

where

�1 =
E0sc�q�

q
m1, �2 =

E0sc�q�
q

m2, �16�

and m1, m2 are defined in Eq. �7�.
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The solution to Eqs. �13� and �14� which satisfies bound-
ary conditions �15� yields the following expressions for the
electric field inside the LC layer:

Ex = E0x exp�iqx� + c.c., Ez = E0z exp�iqx� + c.c. �17�

where

E0x = q	�1 + �2

4

cosh�q̃z�
cosh�q̃L/2�

+
�2 − �1

4

sinh�q̃z�
sinh�q̃L/2�


 ,

E0z = − iq̃	�1 + �2

4

sinh�q̃z�
cosh�q̃L/2�

+
�2 − �1

4

cosh�q̃z�
sinh�q̃L/2�


,

q̃ = q� ε̃�

ε̃�

, �18�

B. Director equation

As the director is confined to the xz plane, the director
spatial profile in the nematic cell can be completely defined
in terms of the angle ��x ,z� between the director and the x
axis �Fig. 4�,

n = �cos ��x,z�,0,sin ��x,z�� . �19�

The equilibrium director profile can now be found by
minimizing the total free-energy functional of the LC cell
defined by

F = Fel + Fl + FE + Ffl, �20�

subject to so-called strong anchoring conditions

��x,z = − L/2� = �1,

��x,z = L/2� = �2, �21�

where �1 and �2 are the angles of the director easy axis on
the planes z= 


L
2 , respectively.

We include explicitly the following contributions to the
free energy: the Frank-Oseen elastic energy, with splay,
twist, and bend elastic constants, respectively, K11, K22, K33,

Fel =
1

2
� �K11�� · n�2 + K22�n · � 	 n�2

+ K33�n 	 � 	 n�2�dV

=
1

2
� �K11�	 ��

�z

2

+ 	 ��

�x

2� + �K33 − K11�

	� ��

�x

��

�z
sin 2� + 	 ��

�x

2

cos2 �

+ 	 ��

�z

2

sin2 ���dV , �22�

and the flexoelectric free-energy term, linear in the electric
field

Ffl = −� �P f · E�dV

= −� �e11�nE��� · n� + e33�E · �n��n��dV

=� �Ex� e11 + e33

2
sin 2�

��

�x

− �e11 cos2 � − e33 sin2 ��
��

�z
�

+ Ez��e11 sin2 � − e33 cos2 ��
��

�x

−
e11 + e33

2
sin 2�

��

�z
��dV . �23�

We shall neglect the following contributions: the aniso-
tropic part of the electrostatic free energy, quadratic in the
electric field

FE = −
�0�̃a

2
� �n · E�2dV

= −
�0�̃a

2
� �cos2 �Ex

2 + sin2 �Ez
2 + sin 2�ExEz�dV ,

�24�

and the light beam-LC interaction energy, with �a is the an-
isotropy of the LC dielectric permittivity at optical frequency
supposing �a�1

Fl = −
�0�a

4
� �n · Eh�2dV . �25�

We have neglected the dielectric anisotropy term �Eq.
�24�� and have asserted that the flexoelectric term is more
important. This is a key step in our calculation and is some-
what counterintuitive. In most liquid-crystal contexts, flexo-
electricity may be regarded as a correction to a physical
problem primarily involving energy balance between dielec-
tric anisotropy and elasticity. We have both experimental and
theoretical reasons for following this procedure.

Our cell surfaces contain significant pretilt, and the exis-
tence of the pretilt makes an important contribution to the

FIG. 4. Experimental set-up, showing quantities associated with
the director, as discussed in text.
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nonlinear optics. The pretilt has opposite signs on the top and
bottom substrates, causing the whole system to lack reflec-
tion symmetry in the x direction. The nonlinear optics re-
sponds noticeably to this lack of symmetry. This implies that
there is a contribution to the nonlinear optics which is linear
in the space-charge field �for a quadratic term would be sym-
metric with respect to x�. Such a contribution can only be
produced by flexoelectricity.

Theoretically, we estimate the order of magnitude of the
dielectric anisotropy energy �Eq. �24��. We show that this is
expected to be an order of magnitude lower than the flexo-
electric energies. Neglecting dielectric anisotropy is there-
fore a self-consistent procedure. It is interesting to note that
the flexoelectric terms are linear in the space-charge field,
whereas the dielectric anisotropy terms are quadratic. The
usual situation in liquid-crystal problems is that symmetry
considerations require the linear terms to disappear or be
very small. However, mathematically one would expect that
linear terms dominate quadratic terms in expansions in small
quantities, and this is in fact what happens here.

To make specific estimates of the order of magnitude of
the various quantities, we note the following. Typical values
of the grating period are �= �1–5��m �13�, corresponding to
q=2� /���106–107�m−1 and elastic constant K�10−11 N.
This yields a LC elastic energy density of the order of Kq2

��10–103�J /m3. To estimate the dc-electric field value we
use the value of the photorefractive �space-charge� field in an
infinite photorefractive medium. This can be taken of the
order of the diffusion field, yielding E�E0sc�qkBT /e
=0.026q�3	 �104–105�V m−1 ��23�, p. 90�. A typical ex-
perimental static LC dielectric anisotropy in photorefractive
hybrid cells is �̃a�5 �13�. Thus the ratio of the anisotropic
part of the LC electrostatic energy density to the LC elastic
energy density is of the order of �0�̃aE2 /Kq2�3	10−3.

Estimating the flexoelectric moduli e11 and e33 presents
more of a problem because these quantities are not available
from the manufacturer. Edwards et al. �26� used a combina-
tion of macroscopic modeling and experiment to estimate
these quantities for the liquid crystal E7. Cheung et al. �27�,
Stelzer et al. �28�, and Allen and Masters �29� used simula-
tion methods to make microscopic estimates of the flexoelec-
tric coefficients. The upshot of this work is an estimate of
e11,e33�10−11 C /m, which in turn yields a flexoelectric en-
ergy density of the order of eiiqE0sc��0.3–30� J /m3. This
implies that the ratio of the flexoelectric energy density to the
elastic energy density is of the order of eiiqE0sc /Kq2�3
	10−2. This is one order of magnitude larger than the ratio
of the anisotropic part of the electrostatic energy density to
the elastic energy density and justifies ex post facto the in-
clusion of flexoelectricity in the model.

We now minimize the functional �Eq. �20��, including
only terms �22� and �23�. We express the director n explicitly
in angular form using Eq. �19�. We expand in small ��x ,z�
and include terms in � up to linear order. After some algebra,
we obtain the following equation:

K11
�2�

�z2 + K33
�2�

�x2 + �e11 + e33�	 �Ex

�x
−

�Ez

�z

� − e11

�Ex

�z

− e33
�Ez

�x
= 0, �26�

subject to the boundary conditions �Eq. �21��.

C. Director spatial profile

The angular profile of the director comes from solving Eq.
�26�. The director distortion ��x ,z� can then be represented
by the following Fourier expansion:

��x,z� = �0�z� + ���z�exp�iqx� + c.c.� , �27�

where the zero-wave number contribution �0�z� is induced by
the initial director pretilt at the cell surfaces, and ��z�, the
amplitude of the director grating is caused by the interaction
with the spatially modulated space-charge field. The optical
effects will be expressed in terms of these quantities. We
therefore seek to transform Eq. �26� into equations in which
these are explicitly calculated.

We note that the strong anchoring conditions �21� allow
us to specify Dirichlet boundary conditions both for �0�− L

2 �
=�1, �0� L

2 �=�2, and for ��
 L
2 �=0. The formal procedure in-

volves making a transverse Fourier expansion of Eq. �26� in
terms of components with wave numbers integral multiples
of q. Equations for �0�z� and ��z� then result if one considers
separately the components associated with wave numbers 0
and q. We neglect higher-order terms in the Fourier expan-
sion, which include higher Fourier components of the Fou-
rier expansion given in Eq. �27�.

After some algebra, we derive the following equations:

�2�0

�z2 = 0, �28�

K11
�2�

�z2 − K33q
2� = F�z� = − �e11 + e33��0	iqE0x −

�E0z

�z

�

+ 	e11
�E0x

�z
+ iqe33E0z
 . �29�

Equation �28� governs the behavior of the director in the
absence of the photorefractive electric field. Equation �29� is
a differential equation for ��z�, the principal Fourier compo-
nent of the remaining part of director, with source terms F�z�
which come from the space-charge field. It is ��z� which
governs the beam-coupling properties. F�z� can be divided
into two groups of terms. One group contains terms propor-
tional to the small pretilt �0, and one group does not contain
this prefactor. A quantitatively larger contribution to F�z� and
hence implicitly to the director reorientation, however, come
from the second group of terms which do not contain the
small parameter �0.

The solution to Eq. �28� is

�0�z� = s + pz, s =
�1 + �2

2
, p =

�2 − �1

L
. �30�
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The solution for ��z� can be obtained substituting expres-
sions �18� into Eq. �30�. We will take into account that in the
region of interest for us, q��106–107� m−1 and L
��10−5–10−4� m, the inequalities qL�1 and q̃L�1 take
place. We also suppose that �K33 /K11�1/2q�q. Then, writing
the solution we neglect small terms of the order of 1 /qL and
1 / q̃L near unity and arrive at the following form:

��z� =
1

2
��1D1�z� + �2D2�z�� , �31�

where

D1�z� =
rqq̃

q̃2 − q1
2��1 +

i2p�q̃2 + q2�
q�q̃2 − q1

2� ��e−q1�z+L/2� − e−q̃�z+L/2��

−
i�q̃2 + q2�

qq̃
��0�z�e−q̃�z+L/2� − �1e−q1�z+L/2��� , �32�

D2�z� =
rqq̃

q̃2 − q1
2��1 +

i2p�q̃2 + q2�
q�q̃2 − q1

2� ��eq̃�z−L/2� − eq1�z−L/2��

−
i�q̃2 + q2�

qq̃
��0�z�eq̃�z−L/2� − �2eq1�z−L/2��� , �33�

and where we define the quantities q1 and r by

q1 = q	K33

K11

1/2

, r =
e11 + e33

K11
. �34�

Finally, using the definition �Eq. �16�� for the electric poten-
tials �1 and �2 and Eqs. �5�–�7� it will be useful to rewrite
formula �31� for ��z� in the form

��z� =
E0sc�q�

q
cos�2���A1�− L/2�

A2�− L/2�
D1�z� +

A1�L/2�
A2�L/2�

D2�z�� .

�35�

IV. COUPLED LIGHT MODES

In this section we investigate how the director grating
obtained in the previous section influences the two beam
energy exchange in the LC cell. In order to do this we cal-
culate the liquid-crystal dielectric tensor. This will serve as
input to our light propagation calculations.

A. Dielectric tensor profile

The LC dielectric tensor at an optical frequency �ij
=���ij +�aninj can be written to the second order in the di-
rector angle ��x ,z� as

�̂ = ��� − �a�2�x,z� 0 �a��x,z�
0 �� 0

�a��x,z� 0 �� + �a�2�x,z�
� , �36�

where �a=�� −�� and ��, �� are the principal values of the
dielectric tensor. In Eq. �36� we left the quadratic in the
director deviation angle ��x ,z� terms because, as we will see
further, their contribution is significant. Substituting ��x ,z�

from Eq. �27� into Eq. �36� and neglecting small terms of the
second order in the angle ��z� one can rewrite the dielectric
tensor in the following way:

�̂�x,z� = �̂1 + �̂2�z� + ��̂3�z�exp�iqx� + c.c.� , �37�

where

�̂1 = ��� − �a�1
2 0 �a�1

0 �� 0

�a�1 0 �� + �a�1
2�, �̂2�z� = �a��0�z� − �1�

	��0�z� + �1 0 1

0 0 0

1 0 − �0�z� − �1
� ,

�̂3�z� = �a��z��− 2�0�z� 0 1

0 0 0

1 0 2�0�z�
� . �38�

The first term in Eq. �37� corresponds to uniaxial homoge-
neous medium tilted at the angle �1 with respect to the x axis,
the second term takes into account inhomogeneity of the
director distribution in the LC cell due to boundary condi-
tions at the cell planes, and the third term describes the
change in the dielectric tensor due to periodic modulation of
the director by the dc photorefractive electric field with pe-
riod 2� /q.

B. Two beam light propagation

The electric field of the light beams propagating in the
liquid-crystal cell can be written in terms of the beam ampli-
tudes A1�z� and A2�z� in the following form:

Eh = A1�z�e1 exp�ik1 · r − i�t� + A2�z�e2 exp�ik2 · r − i�t� ,

�39�

where �see Fig. 3� e1= �cos �̃1 ,0 ,−sin �̃1�, e2
= �cos �̃2 ,0 , sin �̃2�, k1= �k1 sin �1 ,0 ,k1 cos �1�, and k2
= �−k2 sin �2 ,0 ,k2 cos �2� are, respectively, the polarizations
and wave vectors of the two beams. The director is only
subject to small deviations from homogeneous planar orien-
tation. In the simplest approximation, which we adopt here,
we can then assume that inside the LC cell the beam polar-
izations and wave vectors �but not amplitudes� are un-
changed, and correspond to the values taken in a homoge-
neous LC with dielectric tensor �̂1. A more sophisticated
approach, using, for example, the eikonal approximation
�22�, would allow the beams themselves to bend in response
to the medium inhomogeneity.

The propagation constants k1= �
c n1 and k2= �

c n2 can be
found using the well-known LC refractive index formula
n���=�������� sin2 �+�� cos2 ��−1/2, where � is the angle
between the light wave vector and the director. Here n1
=n��1� and n2=n��2� where �1=� /2−�1−�1 and �2=� /2
+�2−�1.

The light beam electric fields satisfy the usual vector
wave equation ��23�, p. 8�
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���� ·�· − �2�Eh −
�2

c2 �̂�x,z�Eh = 0. �40�

We now substitute the electric field �Eq. �39�� and the
dielectric tensor �̂�x ,z� �Eq. �35�� into formula �40�. Cou-
pling between the waves takes place as a result of the inho-
mogeneous corrections to the constant dielectric tensor �̂1
��23�, Chap. 2�. The electric field magnitudes A1�z� and A2�z�
then vary slowly across the cell. We follow a procedure
analogous to that of Jones and Cook �19�, and first outlined
by Kogelnik �30�, who studied coupled waves in an isotropic
dielectric photorefractive system in the Bragg regime. The
main difference between our system and that of Jones and
Cook is the existence of inhomogeneities in the z direction.

This approach is valid in the so-called Bragg regime,
which holds if the Klein parameter Q=2��d /n�2 is much
greater than unity �31�. Typical values of the parameters used
in our experiments are as follows: the light wavelength �
=0.532 �m, the grating spacing �= �1–5��m, the average
refractive index n�1.5, and the hybrid cell thickness d
�1 mm. Thus we find Q�102–103, and we expect that the
Bragg regime will apply here.

We note that leading-order terms �i.e., those containing
terms independent of ��z� and �0�z�� in this substitution must
cancel, because each wave separately obeys the vector wave
equation with constant dielectric tensor �̂1:

A1e1�
2 exp�ik1 · r� +

�2

c2 �̂1A1e1 exp�ik1 · r� = 0,

A2e2�
2 exp�ik2 · r� +

�2

c2 �̂1A2e2 exp�ik2 · r� = 0. �41�

After some algebra, but following the standard procedure,
we now obtain from Eq. �40� the following set of coupled
equations in the LC cell:

�k1 · e1�2A1 + 2i�k1z − e1z�k1 · e1��
dA1

dz

= − k2e1�̂3e2 exp�i�kzz�A2 − k2e1�̂2e1A1,

�k2 · e2�2A2 + 2i�k2z − e2z�k2 · e2��
dA2

dz

= − k2e2�̂3
�e1 exp�− i�kzz�A1 − k2e2�̂2e2A2, �42�

where �kz=k2z−k1z and k= �
c . The intermediate expressions

in Eqs. �42� can be explicitly evaluated using Eqs. �38�,
yielding:

e1�̂2e1 = − �a��0�z� − �1���0�z� + �1 + 2�̃1� ,

e2�̂2e2 = − �a��0�z� − �1���0�z� + �1 − 2�̃2� ,

e1�̂3e2 = − 2�a�0��z� . �43�

The scalar products k1 ·e1 and k2 ·e2 are strictly zero in
isotropic media. In discussing photorefraction in anisotropic
media, these terms represent a new feature, and could in
principle add some new physics. But all such terms are pro-

portional to the optical dielectric anisotropy �a, which is,
however, a small quantity in our case. It turns out, in addi-
tion, that adding terms of o��a� to Eqs. �42�, only add terms
of o��a

2� to the relevant solutions. We thus feel able to neglect
these terms in Eqs. �42� even though they are not strictly
zero.

We recall that beam 1 is the signal and beam 2 is the
pump. Furthermore, we adopt the undepleted pump approxi-
mation, for which the magnitude of the pump amplitude
A2� A1 may be regarded as constant ��23�, p. 152�, and its
phase may be taken arbitrarily as zero. In this case, Eqs. �42�
reduce to

dA1

dz
=

ik2

2k1z
e1�̂3e2 exp�i�kzz�A2. �44�

We also assume that the wave vectors of the light beams are
symmetric with regard to the cell normal so that the angles
�1 and �2 are equal. Then �kz=k2z−k1z= �

c �n2−n1�cos �1 is
proportional to �a and with an accuracy to the terms of the
order of �a

2 we can replace the exponential multiplier in Eq.
�44� by unity. Finally, taking into account Eq. �43� we arrive
at

dA1

dz
= is�z�A2,

s�z� =
k2

2k1z
e1�̂3e2 = −

k2

k1z
�a��z��0�z� . �45�

We now use this equation to investigate the optical properties
of the liquid-crystal slab.

C. Exponential gain coefficient

Equations �45� can be solved, yielding the following so-
lution in explicit form:

A1�z� = A1�− L/2� + iA2�
−L/2

z

s�z��dz�. �46�

We now explicitly substitute for s�z� in terms of the z depen-
dence of ��z� from Eq. �35� in Sec. III C, yielding:

s�z� = −
�ak2

k1z

E0sc�q�
q

cos�2��
A2

�0�z��A1�− L/2�D1�z�

+ A1�L/2�D2�z�� . �47�

The signal gain caused by the LC layer is then

G =
A1�L/2�

A1�− L/2�
, �48�

where, from Eq. �46�,

A1�L/2� = A1�− L/2� + iA2�
−L/2

L/2

s�z�dz . �49�

Substituting s�z� from Eq. �47� into Eq. �49� yields
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G = 1 − i
�ak2

k1z

E0sc�q�
q

cos�2���
−L/2

L/2

�0�z��D1�z� + GD2�z��dz .

�50�

Equation �50� yields the following expression for G:

G =
1 + a1

1 − a2
, �51�

where

a1 = − i
�ak2

k1z

E0sc�q�
q

cos�2���
−L/2

L/2

�0�z�D1�z�dz ,

a2 = − i
�ak2

k1z

E0sc�q�
q

cos�2���
−L/2

L/2

�0�z�D2�z�dz . �52�

The exponential gain coefficient is given by formula

g =
1

L
ln�1 + a1

1 − a2
� . �53�

We now substitute Eq. �30� for �0�z� and Eqs. �32� and �33�
for D1�z� and, D2�z� into Eq. �52�. Performing the integra-
tions in Eq. �52� now yields

a1 =
�ark2 cos�2��
k1zq1�q̃ + q1�

��1 + 	1 +
q̃

q1

 p

q̃
�E0sc�q� , �54�

a2 =
�ark2 cos�2��
k1zq1�q̃ + q1�

�− �2 + 	1 +
q̃

q1

 p

q̃
�E0sc�q� . �55�

This result is the consequence of combining standard theo-
ries for liquid crystals and photorefraction. In the next sec-
tion we shall compare this result with experimental data,
which demonstrate that this natural theory is deficient and
that further new ideas are required.

V. EXPERIMENTS

A. Experimental parameters

We use experimental parameters from the paper by Cook
et al. �13� and also follow their estimates for relevant mate-
rial parameters. In this experiment the eutectic LC mixture
TL 205 was used in photorefractive hybrid cells, with a light
wavelength in air �=0.532	10−6 m, LC ordinary and ex-
traordinary refractive indices n0=1.527 and ne=1.744, re-
spectively, with low-frequency dielectric constants �̃II=9.1
and �̃�=4.1. In addition, the dielectric permittivity of the
photorefractive layers is given by �Ph�200 at temperature
T=300 K. The liquid-crystal pretilt angle was approxi-
mately 12°, yielding �1=12°, �2=−12°. In these estimates
we assume the so-called one-elastic-constant approximation,
for which

K33

K11
=1. In addition, the quantity k2

k1z
cos�2�� in Eqs.

�54� and �55� includes the cosine of the small angle �, which
is proportional to the grating spacing. It is thus insensitive to
the grating spacing and to a good degree of accuracy one
may suppose k2

k1z
cos�2��= �

c
cos�2��

n1 cos �1
�1.25�

� . In typical cases,

the ratio of the acceptor to donor impurity densities is very
small, Nd�Na. Following Cook et al. �13�, we estimate Na
�3.8	1021 m−3. Finally, we estimate the parameter r

=
e11+e33

K11
. This characteristic ratio of flexoelectric to elastic

moduli is not known for TL205, but the ratio r has been
measured in other liquid-crystal systems �26�, and a value of
1 C m−1 N−1 may be regarded as typical. We note that in any
case the value of the parameter r only influences the total
magnitude of the effect, but not any other functional proper-
ties.

B. Comparison with theory

We first make numerical estimates of the predictions for
the observed gain coefficient, using the theory of Secs. II–IV,
as summarized in Eqs. �53�–�55�. We compare these with the
results from the work of Cook et al. �13�. Some extra experi-
ments extending the range of observations have also been
made especially for this paper.

In Fig. 5 we compare theoretical predictions for the expo-
nential gain coefficient with the experiments on the eutectic
LC mixture TL 205. We consider a cell of thickness 10 �m.
Here, and in other figures to follow, we follow experimental
convention �13� and plot the gain as a function of grating
spacing �= 2�

q rather than as a function of the theoretically
more convenient grating wave number q. The only unknown
input parameter is r, the ratio of the flexoelectric to the elas-
tic coefficient. This we suppose on rather general theoretical
grounds to be of the order of unity, although our results are
relatively robust with respect to changes in r.

The theory fails to account for the experiments, as can be
seen rather dramatically in Fig. 5. The experimental effect is
much larger than that predicted effect and occurs at lower
values of the grating spacing. In fact, the disagreements are
both quantitative and qualitative. The theory predicts a g���
dependence which is low at low �, increases approximately
as �2, further increases toward at a maximum gmax at some
�m, and finally decreases at high �. This much is in common

0 1 2 3 4 5
� �Μm�

�2

0

2

4

6

ln
g

FIG. 5. Comparison of theoretical prediction based on formulas
�53–55� with experimental data for liquid crystal TL 205 cell with
L=10 �m. Exponential gain coefficient g�in cm−1� versus the grat-
ing spacing: experimental data-light boxes, theoretical prediction-
curve. Note the logarithmic scale required to fit both curves in the
same diagram, so poor is the agreement.
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with the experiments. However, the theoretical value of �m
is of the order of 10 �m, whereas the experimental value is
�2 �m. Furthermore the theoretical value of gmax is of the
order of 15, whereas the experimental value is closer to 400.

Further discrepancies between theory and experiment in-
clude the following:

�a� The experimental value of �m�1.7 �m is rather in-
sensitive to cell thickness L, whereas the naïve theory seems
to predict �m�L.

�b� By contrast the experimental value of gmax does
strongly depend on cell thickness L, whereas the theory pre-
dicts gmax�10 cm−1 to be insensitive to changes in L.

�c� If it is required to remedy the value of gmax, then a
wholly implausible value of r=30 is needed. Furthermore,
r=30 predicts a value of �m incorrect by a factor of about 5,
so this fix is wholly insufficient.

Finally we note that the theory appears to predict negative
g��� in the high � regime, again in disagreement with ex-
periment, which seems to exhibit a point of inflection. Here,
however, the theory is outside its region of validity. Roughly
speaking, we might have expected the theory to be valid so
long as qL�1, where q is the grating wave number. This is
equivalent to the condition ��

L
2� ; the approximation fails at

high grating spacings.

C. Nonlinear theory

In this section we discuss the failure of the linear theory
to explain the experiments and search for an alternative ex-
planation. We first restate the result �Eq. �53�� for the gain
coefficient in a slightly different language:

g�q,L� �
a1 + a2

L
= rI�q�Hfl�q�E0sc�q� , �56�

where I�q� is a factor which is due only to the interference
between the beams, Hfl�q� is a factor which comes from
flexoelectricity, E0sc�q� is the space-charge field, and r is a
dimensionless ratio depending on the elastic constants. The
important point is that the formula for the gain factor can be
separated into a product of these three factors, each of which
is due to a different physical process, and that all three physi-
cal processes contribute to the full physical phenomenon.
The absolute magnitude of the phenomenon is governed by
the dimensionless parameter r. If the theory were correct, it
might in principle be regarded as an independent measure-
ment of r, but in any event it must be regarded as a fitting
parameter for comparison with experiments.

As formula �56� has failed to reproduce the experiments,
we now pose the question as to which parts of the calculation
are least reliable and thus how we may make further
progress. We consider the three contributions in turn:

�a� Beam interference. There are many experiments on
photorefraction in orthodox photorefractive systems, for
which terms such as I�q� act as a driving force. These pho-
torefractive systems are well-described by theory �23�, and it
seems that this part of the theory is well-founded.

�b� Flexoelectricity. Strictly speaking this term arises be-
cause of a balance between nematic flexoelectricity and elas-
ticity. We have given an order of magnitude argument to

justify our neglect of the competing dielectric anisotropy
term. The key piece of experimental evidence that flexoelec-
tricity plays an important role is the fact that cells with op-
positely tilted boundaries �in which the LC in the cell is
subject an intrinsic elastic bend� exhibit a much larger beam-
coupling effect than cells with similar boundaries tilted in the
same way.

�c� Space-charge field. We know that the space-charge
field is calculated correctly, again because we are able to
describe beam coupling in the bulk photorefractive systems.
However, our approximation has decoupled the photorefrac-
tive and liquid-crystal systems; the bulk photorefractive sys-
tem acted as a surface driving force for the liquid crystal. It
seems inconceivable that the space-charge field in the bulk
inorganic photorefractive far from the liquid crystal is not in
some sense the ultimate driving force for the electric field
effects in the liquid crystal. However, it is possible that the
decoupling approximation we have adopted is not correct. It
is also possible that some other physical processes couple the
bulk photorefractive space-charge field to the liquid-crystal
flexoelectricity. We shall discuss below some speculations as
to how this might work. We propose to replace Eq. �56� by a
phenomenological alternative formulation, which retain all
the physics which seems most certain, but yet allows some
different grating wavelength dependence of the beam-
coupling gain coefficient. Thus we propose

g�q,L� �
a1 + a2

L
= rI�q�Hfl�q�F�E0sc�q�� , �57�

where the function F�w� is a phenomenological function to
be determined. The most plausible form for F�w� merely
corrects the linear form F�w��w by a cubic correction. We
thus suggest the following form:

F�w� = w�1 + ��L,q�w2� , �58�

where the cubic correction term is dependent on the thick-
ness of the liquid-crystal layer L and on the grating wave
vector.

We thus replace Eq. �56� by the modified prediction:

g�q,L� �
a1 + a2

L
= rI�q�Hfl�q��E0sc�q� + ��q,L��E0sc�q��3� .

�59a�

A detailed examination of the q-dependence of Eq. �59a� at
constant L, shows that in the high q �and hence low grating
spacing �� regime, ��q ,L����L�q2, where ��L� is a func-
tion only of cell thickness L,

g�q,L� �
a1 + a2

L
= rI�q�Hfl�q��E0sc�q� + ��L�q2�E0sc�q��3� .

�59b�

This form now permits explicit comparison with the experi-
mental results.

In Eq. �59b�, we find that the cubic �E0sc�q��3 term domi-
nates to the extent that the linear E0sc�q� term can effectively
be neglected. In Fig. 6 we compare expression �59b� with the
experimental � dependence of g�q ,L� ��= 2�

q � for a number
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of different values of L. In Sec. V D below we discuss ex-
perimental evidence, presented in this paper, that the particu-
lar form �E0sc�q��3 is the correct parametrization.

The low � regime is fitted �and hence necessarily cor-
rect�. The general features of the experimental and theoreti-
cal curves are similar. There is a maximum in g�q ,L� as a
function of �. The high � regime is not quantitatively accu-
rate but is nevertheless qualitatively correct. The quantity
��L��2	10−21 in SI units, and is relatively insensitive to
cell thickness L over the range L=5–10 �m, although we
find that for L=20 �m, ��L��10−21. Key features of the
experimental results which are well-described by this param-
eterization, but for which the naïve theory of Secs. II–IV
fails to account, are �a� the constancy of �m�L��1.7 �m
and �b� the magnitude of gmax�L�. In Fig. 7, we compare
theory and experiment for these quantities.

D. Three beam gain experiment

We have found in the previous subsection that the most
plausible explanation of the photorefractive beam-coupling
data in the liquid-crystal layer requires a strong contribution
to the amplitude of this effect proportional to the cube of the
bulk photorefractive space-charge field in the inorganic layer.
In this section we present extra experimental evidence that
this cubic contribution is indeed real.

The experiment involves a third He-Ne laser beam inci-
dent on the hybrid cell. This beam possesses a different fre-
quency from the two primary interfering beams and hence
does not interfere directly with the beams which write the
diffraction grating. However, the third beam does affect the
magnitude of the bulk space-charge field E0sc�q� �see Eq.
�59b��.

The experiment infers indirectly the change in E0sc�q�
when the third beam is introduced. It does this by performing
comparing gain measurements through the total sample but
with the “liquid-crystal” cell filled an inert substance �in our
case, oil� rather than liquid crystal. The total gain in the
system, now including the liquid-crystal cell, now allows a
calculation of a value of g. By comparing the gain in the
presence of the third beam to that which occurs without the

third beam, it is then possible directly and independently to
measure the influence of the bulk space-charge field on the
beam coupling.

Figure 8 shows the experimental arrangement used to in-
troduce the third He-Ne laser beam. A continuous wave 532
nm laser generated the pump and signal beams which were p
polarized. The grating spacing was controlled by adjusting
the external angle between the pump and signal beams, �,
and the grating spacing, �, was given by �=� /2 sin�� /2�. A
10 mW pump beam was used for the experiment while the
incident signal beam was attenuated to 7 �W to ensure the
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FIG. 6. Theoretical fit for the gain coefficient g�� ,L� compared
to experimental data for liquid crystal TL 205 cells of different
thickness: L��m�=5.7—stars, 7.1–light boxes, 10–black boxes.
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FIG. 7. Comparison of theory and experiment for different
thickness L: �a� Grating spacing �max at which gain is maximal. �b�
Maximal gain coefficient gmax. In each case, light boxes correspond
to experiment, and stars to the theory. Note that parameters for the
theory for each L have been determined by fitting at high �. Liquid
crystal: TL 205.

FIG. 8. �Color online� Three-beam experimental
arrangement.
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gain measurements were carried out in the small signal re-
gime. The Gaussian intensity pump and signal beam spot
diameters were both approximately 2.8 mm at the 1 /e2 in-
tensity level. An unpolarized He-Ne laser operating at 543.5
nm was used to provide the noninterfering third beam which
overlapped the pump and signal beam interaction region with
a spot diameter slightly larger ��3.8 mm diameter at 1 /e2�
than the pump and signal beam diameters. The slightly larger
diameter of the He-Ne laser beam ensured good spatial over-
lap with the grating recording beams and also negated any
alignment sensitivity of the He-Ne beam on the gain mea-
surements.

The hybrid cell comprised two windows of 0.1% cerium
doped strontium barium niobate �Ce:SBN� with dimensions
20 mm	20 mm	1.3 mm. The crystal c axes were
aligned parallel to one of the 20-mm-long edges and the cell
was assembled with the crystal axes parallel to each other
and oriented parallel to the plane of the incident 532 nm
polarization, as shown in Fig. 8. The internal faces were spin
coated with a 0.125 wt % solution of Elvamide® �DuPont�
nylon multipolymer in methanol followed by unidirectional
parallel rubbing orthogonal to the crystal c-axes directions.
The combination of this surface treatment with the use of the
Ce:SBN windows produces a splayed planar alignment of
the liquid-crystal layer �13,14�. The cell was assembled using
10-�m-thick plastic spacers to define the liquid-crystal layer
thickness and filled by capillary attraction of the TL205 liq-
uid crystal into the cell void.

As discussed above, the gain contributions from the
Ce:SBN and the liquid-crystal layer were separately identi-
fied by comparing the cell gain measurements with and with-
out the liquid crystal present. Reference gain measurements
were first taken by filling the cell with oil of a similar refrac-
tive index to the TL205 liquid crystal �Cargille® type A, n
=1.515�. The gain of the oil filled cell was then measured as
a function of the grating spacing both with and without the
He-Ne laser present. After disassembly, cleaning, recoating,
and reassembly, the cell gain was measured when filled with
the liquid crystal, both with and without the He-Ne laser
present. The oil-filled cell allowed the exponential gain co-
efficient of the Ce:SBN substrates to be calculated directly
from the net optical gain and the physical path length of the
signal beam through the two Ce:SBN windows. The net gain
of the liquid-crystal-filled cell was then divided by the rel-
evant oil filled cell gain �with or without the He-Ne� to ob-
tain the liquid-crystal gain as a function of grating spacing.
The exponential gain coefficient of the liquid-crystal layer
with and without the He-Ne laser present was then deter-
mined from the calculated gain and the physical path length
through the liquid-crystal layer.

Specific details of the calculation are as follows. Define
the following quantities:

G2
oil: total gain through the system with oil-filled cell

without the third He-Ne beam;
G3

oil: total gain through the system with oil-filled cell with
the third beam;

G2
lc: total gain through the system with liquid-crystal-

filled cell without the third beam;
G3

lc: total gain through the system with liquid-crystal-
filled cell with the third beam, where “system” here refers to

the total system including the cell and the sandwiching pho-
torefractive windows. Suppose the photorefractive windows
have total thickness D. Let the exponential gain coefficients
in the photorefractive windows be �2 and �3 in the absence
and presence, respectively, of the third beam. Now, when it is
filled with oil, the cell plays no part in the optical gain pro-
cess, and we can write

G2
oil = e�2D, G3

oil = e�3D. �60�

The theory of exponential gain coefficients in photorefractive
media is well understood �23�, and we know that the quan-
tities � are proportional to the relevant space-charge fields.
Then combining the two parts of Eq. �60� yields the follow-
ing relation:

�32 =
�2

�3
=

ln G2
oil

ln G3
oil =

E0sc�q�
E0sc

�3� �q�
, �61�

where E0sc
�3� �q� is the space-charge field in the bulk photore-

fractive media as modified by the presence of the third beam.
By analogy with Eq. �60�, we can also write

G2
lc = e�2D+gL, G3

lc = e�3D+g�3�L, �62�

where the quantity g�3� is the exponential gain coefficient in
the liquid crystal in the presence of the third beam. Combin-
ing Eqs. �60� and �62� yields

r32 =
g

g�3� =
ln G2

oil

ln G3
oil�

ln G2
lc

ln G2
oil − 1

ln G3
lc

ln G3
oil − 1� , �63�

where the quantity r32 is itself a function of the grating wave
number q or spacing �. In Fig. 9 we plot �32 as a function of
grating spacing �. We find that in the region over which we
measure, �32�1.14�0.01 with no significant � dependence.
This therefore gives the ratio of the photorefractive space-
charge fields with and without the He-Ne. We also plot in
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FIG. 9. The quantities �32��� �squares� r32��� �circles�, defined
in the text. The relation r32���=�32

3 ��� is consistent with the theo-
retical interpretation of Sec. V C. According to this interpretation,
the �-dependence of the exponential gain coefficient g is explicable
in terms of a cubic dependence of the photorefractive space charge.
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Fig. 9 the behavior of r32���. Here the plot is somewhat
noisy, but there is no evident � dependence, and we find a
best fit of r32����1.6�0.1.

In general we may suppose that g�3� and g are functions of
the photorefractive space-charge fields driving the exponen-
tial gain coefficients. Then their ratio r32 will be the ratio of
these functions. The discussion of Sec. V C suggests that this
function is proportional to the cube of the space-charge field,
which would imply the relation r32���=�32

3 ���. Our mea-
surements are consistent with this prediction, although of
course, they do not establish it unambiguously.

VI. DISCUSSION

A. Possible mechanisms for nonlinearity

The key result of this paper is that the exponential gain
factor of a splayed liquid-crystal cell sandwiched between
two photorefractive windows seems to depend on the prod-
uct of a beam interference term, a flexoelectricity term, and a
space-charge term. The space-charge term depends on the
photorefractive electric field in the refractive windows. Our
theory replaces a naïve linear dependence on the photorefrac-
tive electric field by a cubic dependence.

The evidence for this modification is somewhat indirect
but comes from two independent kinds of experiment, and
we believe that the result may be regarded as established. On
the other hand, the simplest theory �which we have labeled
“naïve” in Secs. II–IV� unambiguously predicts an exponen-
tial gain factor linear in photorefractive electric field. It is
therefore of considerable interest to understand the discrep-
ancy between the naïve theory and experiment. What is the
origin of the nonlinear response?

We do not propose in this paper to answer this question
definitively, not least because a definitive answer would re-
quire further experiments. We can, however, draw some
analogies with other work and also make some speculations
concerning this particular problem. As long ago as 1976
Prost and Pershan �32�, in a classic paper, showed that a
grating could be formed using interdigitated electrodes and a
homeotropic cell. They too find some nonlinear dependence
on the voltage across the interdigitated electrodes. There is
clearly some analogy between a voltage caused by interdigi-
tated electrodes and one caused by a leakage of an �optically
induced� photorefractive field, and in future work we hope to
explore this analogy in greater detail. However at this stage
there is no straightforward way of using the results of Prost
and Pershan.

We now examine in outline some possible origins for the
cubic dependence of the gain on photorefractive field.

1. Pretilt dependence on photorefractive field

We might postulate a nonlinear dependence of the director
pretilt angles at the LC cell planes on E0sc�q�. This might
take the form �1= �

180�1+�E0sc
2 �, �2=− �

180�1+�E0sc
2 � where �

is a fitting parameter. More detailed calculations suggest that
such a hypothesis can indeed predict gmax of the right order.
However, according to this hypothesis �max is still much
larger than that observed in experiment and, unlike in experi-
ment, is sensitive to cell thickness.

2. Anchoring energy dependence on photorefractive field

Alternatively, the space-charge field could modify the LC
anchoring. The physical idea would be that the space-charge
field reorients, for example, the polymer side chains close to
the cell substrates. In this case, for example, the coefficient
W in Rapini-Papoular surface anchoring term FS

= 1
2W cos2��−�easy� would be augmented by a term propor-

tional to �E0sc ·E0sc due to the space-charge field torque on
the polymer chains at the liquid-crystal interface. In this
case, one might expect that there will be a change in the easy
orientation angle ��E0sc

2 . This might in principle lead to a
E0sc

3 dependence of the exponential gain coefficient. How-
ever, in practice we find that our results for g are very insen-
sitive to W, and any E0sc

3 contribution to the gain will be
negligibly small.

3. Inhomogeneous distribution of LC flexoelectric dipoles

The argument of Secs. II–IV uses the standard formula
�11� for liquid-crystal flexopolarization. The argument re-
quires that the liquid crystal be chemically uniform through-
out the sample. This is a usual assumption in liquid-crystal
device modeling, but has not been investigated in any detail.
Equivalently, an implicit assumption is that the spatial distri-
bution of the molecular dipoles in the flexoelectric LC be
homogeneous. Suppose, however, that the flexoelectric LC is
a mixture, in which there exist different moieties with un-
equal dipoles. In this case, the flexopolarization P f�r� may
depend not only on the director gradient in the point r but
also on the concentration of molecules with different dipoles
nearby this point.

This effect might be particularly pronounced if such a
flexoelectric LC were to be placed in an inhomogeneous
electric field. Then molecules with higher dipoles will be
attracted toward the region of higher electric field, thereby
displacing molecules with smaller dipoles. The consequence
would be that the flexoelectric coefficients would exhibit
strong spatial dependence. In a real system, there might be
many components, and there would also be feedback effects
on the director.

We have carried out calculations based on this hypothesis.
A more detailed and comprehensive analysis of the effects of
LC component separation on optical transmission through
liquid-crystal samples will be presented elsewhere �34�. The
result is that we can replace the “bare” flexoelectric coeffi-
cients occurring in Eq. �11� by “effective” flexoelectric coef-
ficients eii=eii

0�1+�q2E0sc�q�2�, where � is a fitting param-
eter, which is dependent on the thickness of the cell. This
modified flexoelectric coefficient would have the effect of
bringing the theory more into agreement with the experi-
ment, and we regard this hypothesis as worthy of further
more exhaustive study.

4. Inhomogeneous distribution of LC flexoelectric quadrupoles

Flexoelectricity may also be due to permanent molecular
quadrupoles in one of the components of the liquid-
crystalline mixture. As in the previous example, an inhomo-
geneous electric field can induce chemical inhomogeneities
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in the LC mixture, and this too would replace bare by effec-
tive flexoelectric coefficients eii=eii

0�1+�q2E0sc�q�2�, as
above. A related mechanism has been discussed by
Schmidtke and Coles �33� in chiral systems. Quantitative es-
timates suggest that this possibility is feasible, and we also
discuss this further elsewhere �34�.

B. Conclusions

We have developed a theoretical model to describe the
experimentally observed energy gain of the weak signal
beam interacting with the strong pump beam in a photore-
fractive hybrid LC cell. The diffraction grating is written in a
flexoelectric nematic layer placed between two inorganic
photorefractive windows. The space-charge field induced by
interfering light beams in the photorefractive substrates pen-
etrates into the LC layer. Flexoelectric polarization in the LC
bulk arises from the interaction between the space-charge
electric field and the initial director pretilt at the cell sub-
strates. The flexoelectric polarization writes the diffraction
grating in the LC cell and is the main physical mechanism
governing the magnitude of the LC layer grating and hence
of the two-beam coupling. Experimental data of the gain
coefficient in the hybrid cell filled with LC mixture TL 205

show that the magnitude of the director grating is a nonlinear
function of the space-charge field.

In this paper we have been able to develop a parameter-
ization which successfully describes most of the experimen-
tal results. Our model requires only one fitting parameter at
each cell thickness, and the fitting parameter is at best only
weakly thickness dependent. The microscopic origin of the
nonlinearity is at present not entirely clear. The most hopeful
possibility focuses on the fact that the liquid crystal is not a
pure system but a mixture. Within this hypothesis, the inho-
mogeneous photorefractive space-charge field within the liq-
uid crystal induces chemical moiety inhomogeneities, which
interact with the flexoelectricity to produce a nonlinear re-
sponse. The resulting quantitative model is the subject of
vigorous current research, and we shall report on this else-
where.
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